

ANL/ALCF-17/3

Evaluation of the OpenCL AES Kernel Using the Intel

FPGA SDK for OpenCL

Argonne Leadership Computing Facility

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at

9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a

growing number of pre-1991 documents are available free via DOE’s SciTech Connect

(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the

National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the

Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document

authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne

National Laboratory, or UChicago Argonne, LLC.

http://www.osti.gov/
mailto:orders@ntis.gov
http://www.ntis.gov/
http://www.anl.gov/
http://www.osti.gov/scitech/)
mailto:reports@osti.gov

ANL/ALCF-17/3

Evaluation of the OpenCL AES Kernel Using the Intel
FPGA SDK for OpenCL

prepared by

Zheming Jin, Kazutomo Yoshii, Hal Finkel, Franck Cappello

Argonne Leadership Computing Facility, Argonne National Laboratory

April 20, 2017

Evaluation of the OpenCL AES Kernel using the Intel

FPGA SDK for OpenCL

Introduction

The OpenCL standard is an open programming model for accelerating algorithms on

heterogeneous computing system. OpenCL extends the C-based programming language

for developing portable codes on different platforms such as CPU, Graphics processing

units (GPUs), Digital Signal Processors (DSPs) and Field Programmable Gate Arrays

(FPGAs). The Intel FPGA SDK for OpenCL is a suite of tools that allows developers to

abstract away the complex FPGA-based development flow for a high-level software

development flow. Users can focus on the design of hardware-accelerated kernel

functions in OpenCL and then direct the tools to generate the low-level FPGA

implementations. The approach makes the FPGA-based development more accessible to

software users as the needs for hybrid computing using CPUs and FPGAs are increasing.

It can also significantly reduce the hardware development time as users can evaluate

different ideas with high-level language without deep FPGA domain knowledge.

 The Advanced Encryption Standard (AES) specifies a standard encryption algorithm

that is used worldwide to protect electronic data. The OpenCL AES kernel was originally

developed by Liu et al. [1] at Virginia Tech. The kernel function converts data to an

unintelligible form using cryptographic keys. The kernel is constructed as a dynamic

library engine that can be linked into the OpenSSL framework. The authors evaluated the

performance of the kernel on the scalable multi-FPGA architecture [2]. Their hardware

platform is based on the M506 module with a StratixV A3 FPGA and 8GB DDR3

memory. On a single M506 module, they achieved the highest FPGA throughput of

5.1Gbps (Giga bits per second) using the OpenCL SIMD4 vectorization optimization.

The throughput of the same test is 4.4Gbps on an i7-4770K processor.

 In this report, we evaluate the performance of the kernel using the Intel FPGA SDK for

OpenCL and Nallatech 385A FPGA board. Compared to the M506 module, the board

provides more hardware resources for a larger design exploration space. The kernel

performance is measured with the compute kernel throughput, an upper bound to the

FPGA throughput. The report presents the experimental results in details. The Appendix

lists the kernel source code.

Overview of the two FPGA devices

FPGA offers a wide variety of configurable memories, high-speed I/Os, logic blocks and

routing. StratixV and Arria10 series of Intel FPGAs are two products for high-

performance applications. Table 1 compares the technology and resource counts of the

StratixV A3 FPGA device [3] on the M506 with those of the Arria10 GX1150 FPGA

device [4] on the Nallatech 385A. The Arria10 device features 20-nm SoC process

technology and operates at 0.95 V core voltage while the StratixV device uses 28-nm

technology and operates at 0.9 V. Based on the results in Table 1, the Arria10 device has

approximately 3X more resources than the StratixV device, so it provides a larger design

exploration space for the performance evaluation of the AES kernels.

Table 1. Device overview of two FPGAs

Device Technology Logic elements ALMs Register M20K

memory bits

Stratix

5SGXMA3
28nm 340K 128,300 513K 19Mb

Arria

10AX115
20nm 1150K 427,200 1708800 54260Kb

Nallatech 385A

Nallatech 385A is a PCIe-based FPGA accelerator card that features an Arria 10 GX1150

FPGA device, PCIe × 8 Generation 3 host interface, and two banks of 4GB DDR3

memory. The theoretical peak floating-point performance is 1.5 TFLOPS and the

theoretical peak memory bandwidth approximately 34 GB/s.

Kernel optimizations

As described in [5], users can take advantage of compute unit replication and kernel

SIMD vectorization to achieve higher throughput or lower kernel time. The compute

device replication generates multiple compute units for each kernel. Each compute unit

has its own memory access interface. The SIMD vectorization duplicates only the data

path of the compute unit without generating additional memory interfaces. When the

kernel is vectorized, the static memory coalescing is performed automatically by the

compiler to generate a memory interface that can coalesce the multiple memory loads

into a single wide load. While there is no limit to the number of kernel copies that users

can specify, the number of SIMD lanes must be a power of two. The compiler will give a

warning when the width of all the lanes exceeds the memory interface data width.

Experimental setup

In this work, a host system is set up with two 2.6 GHz Intel Xeon processors and 32GB

DDR3 memory for each node. The PCI Express provides a Gen2×8 connection. CentOS

6.8 with Linux kernel 2.6.32 is installed as the operating system. We used the Intel’s

FPGA SDK for OpenCL version 16.0.2 Pro Prime for the experimental results.

 For the kernel test, we choose the same input data size as in the paper [2]. The size of

the input data is 2GB and the block size is 128MB. The host program divides the input

data into 16 blocks (2GB/128MB) and they are encrypted sequentially in 16 passes. The

test mode is the AES 256-bit algorithm in ECB mode.

Experimental results

Table 2 lists the FPGA resource usage and the maximum frequency (Fmax) of each

kernel. The default kernel is the baseline kernel without any kernel optimization.

Replication of compute unit is represented as “cuX” where X indicates the replication

times. The combination of kernel duplication and N-lane vectorization is represented as

“simdN+cuX”. The logic utilization of each kernel is below 40%. The RAM block usage

increases from 17% (simd2) to 45% (simd16) for the kernel vectorization and from 20%

(cu2) to 67% (cu16) for the kernel duplication. The significant increase in RAM blocks

for both optimizations is due to the duplication of the four 256-entry by 32-bit look-up

tables in the OpenCL AES kernel. The SDK fails to build when there are more than two

duplicate kernels with SIMD16 vectorization, because they require more RAM blocks

than the device can provide. As shown in the table, kernel duplication degrades the Fmax

from 247 MHz to 186 MHz while kernel vectorization decreases the maximum frequency

from 250 MHz to 218 MHz. This indicates the impact of increasing RAM blocks on the

timing of the kernel implementation.

Table 2. FPGA resource usage and Fmax of the implemented kernels

Kernel Logic

Utilization

Memory

bits

RAM

blocks

Fmax

(MHz)

default 13% 8% 16% 245

simd2 13% 8% 17% 249

simd4 14% 9% 21% 250

simd8 15% 10% 29% 238

simd16 18% 14% 45% 218

cu2 14% 8% 20% 247

cu4 17% 10% 26% 233

cu8 24% 12% 40% 200

cu16 36% 17% 67% 186

simd16+cu2 25% 21% 78% 207

The FPGA power consumption fluctuates between 30W and 60W based on the power

meters reading at 100ms interval over the time of testing all the kernels. We use the

compute kernel throughput (Mbps) to measure the performance of each implementation.

The compute kernel throughput is calculated by dividing the bit size of the workload over

the total kernel execution time on the FPGA. The kernel execution time on an FPGA is

consistent. We found the FPGA throughput, which is calculated by dividing the workload

Figure 1 Compute kernel throughput on the Nallatach 385A FPGA board

3384
5072

6908
8354

9675

5084

7114
8759

9926 10540

0

2000

4000

6000

8000

10000

12000

Compute kernel throughput (Mbps)

over the total execution time, is not consistent for each application run. The total

execution time includes the data transfer time between the host and the device, kernel

execution time and the host execution time. While the compute kernel throughput is the

upper bound to the FPGA throughput, it accurately reflects the performance of each

kernel running on an FPGA device.

 As shown in Figure 1, the kernel throughput does not increase linearly with the

increase of the number of compute units and/or vector lanes. The throughput increases by

less than 50% when the number of compute units or vector lanes doubles from two to

sixteen. The throughput of each SIMD implementations is slightly better than that of

compute unit duplications.

Figure 2 Compute kernel throughput vs. Local work size in kernel duplication

In the kernel duplication optimization, it is interesting that the kernel performance is

intimately related with the local work size [6] for multiple compute units. Figure 2

presents the impact of the local work size on the compute kernel throughput. The x axis

represents the local work size using the exponent as shorthand for 2
exponent

. The local

work sizes are multiples of four. When there is a single compute unit (as a reference), the

kernel throughput slightly fluctuates between 3,382 Mbps and 3,384 Mbps over local

work sizes. For multiple compute units, the kernel throughput reaches its maximum when

the local work size ranges from 2
10

 to 2
16

.

Conclusion

This report provides detailed results of the OpenCL AES kernel implemented on a single

Arria10 GX1150 FPGA board that is available in the laboratory. In our experiment, the

compute kernel throughput is the upper bound to the FPGA throughput for the AES

kernel. The results of the compute kernel throughput show the kernel duplication and

vectorization improve the kernel performance at the cost of high hardware resources.

Using more compute units or vector lanes increases the block RAM usage, which in turn

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16 18 20 22 24

Local work size using the exponent representation

Compute kernel throughput (Mbps) vs. local work size

cu1

cu2

cu4

cu8

cu16

degrades the maximum frequency of the FPGA implementations. The best performance

using kernel duplication is achieved by experimenting with the local work sizes.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy Office of

Science, under contract DEAC02-06CH11357.

Reference

[1] Z. Liu and A. R. M. Ganesh “OpenCL-AES”, Dec. 2011 URL:

http://www.github.com/softboysxp/OpenCL-AES.

[2] S. Gao and J. Chritz, “Characterization of OpenCL on a scalable FPGA architecture,” 2014

International Conference on ReConFigurable Computing and FPGAs (ReConFig14), Cancun, 2014, pp. 1-

6. doi: 10.1109/ReConFig.2014.7032505

[3] Stratix V Device Overview

[4] Arria 10 Device Overview

[5] Intel FPGA SDK for OpenCL. Programming Guide. UG-OCL002. 2016.10.31

[6] https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clEnqueueNDRangeKernel.html

Appendix

/**

 * Copyright 2011 University of Virginia. All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without modification, are

 * permitted provided that the following conditions are met:

 *

 * 1. Redistributions of source code must retain the above copyright notice, this list of

 * conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright notice, this list

 * of conditions and the following disclaimer in the documentation and/or other materials

 * provided with the distribution.

 *

 * THIS SOFTWARE IS PROVIDED BY <COPYRIGHT HOLDER> ''AS IS'' AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> OR

 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 */

// The array values omitted to save space

__constant uint Te0[256] = {… …}

__constant uint Te1[256] = {… …}

__constant uint Te2[256] = {… …}

__constant uint Te3[256] = {… …}

__kernel void AES_encrypt (__global uint4 *state, __constant uint4 *rk, uint rounds) {

 uint global_id = get_global_id(0);

 uint4 s, t;

https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clEnqueueNDRangeKernel.html

 s = state[global_id] ^ rk[0];

 uint r = rounds >> 1;

 uint4 offset0, offset1, offset2, offset3;

 for (;;) {

 offset0 = s & 0xff;

 offset1 = (s.yzwx >> 8) & 0xff;

 offset2 = (s.zwxy >> 16) & 0xff;

 offset3 = (s.wxyz >> 24);

 t = (uint4)(Te0[offset0.x], Te0[offset0.y], Te0[offset0.z], Te0[offset0.w]) ^

 (uint4)(Te1[offset1.x], Te1[offset1.y], Te1[offset1.z], Te1[offset1.w]) ^

 (uint4)(Te2[offset2.x], Te2[offset2.y], Te2[offset2.z], Te2[offset2.w]) ^

 (uint4)(Te3[offset3.x], Te3[offset3.y], Te3[offset3.z], Te3[offset3.w]) ^

 rk[1];

 rk += 2;

 if (--r == 0) {

 break;

 }

 offset0 = t & 0xff;

 offset1 = (t.yzwx >> 8) & 0xff;

 offset2 = (t.zwxy >> 16) & 0xff;

 offset3 = (t.wxyz >> 24);

 s = (uint4)(Te0[offset0.x], Te0[offset0.y], Te0[offset0.z], Te0[offset0.w]) ^

 (uint4)(Te1[offset1.x], Te1[offset1.y], Te1[offset1.z], Te1[offset1.w]) ^

 (uint4)(Te2[offset2.x], Te2[offset2.y], Te2[offset2.z], Te2[offset2.w]) ^

 (uint4)(Te3[offset3.x], Te3[offset3.y], Te3[offset3.z], Te3[offset3.w]) ^

 rk[0];

 }

 offset0 = (t.zwxy >> 16) & 0xff;

 offset1 = (t.wxyz >> 24);

 offset2 = t & 0xff;

 offset3 = (t.yzwx >> 8) & 0xff;

 s = ((uint4)(Te2[offset2.x], Te2[offset2.y], Te2[offset2.z], Te2[offset2.w]) & 0x000000ff) ^

 ((uint4)(Te3[offset3.x], Te3[offset3.y], Te3[offset3.z], Te3[offset3.w]) & 0x0000ff00) ^

 ((uint4)(Te0[offset0.x], Te0[offset0.y], Te0[offset0.z], Te0[offset0.w]) & 0x00ff0000) ^

 ((uint4)(Te1[offset1.x], Te1[offset1.y], Te1[offset1.z], Te1[offset1.w]) & 0xff000000) ^

 rk[0];

 state[global_id] = s;

}

Argonne National Laboratory is a U.S. Department of Energy

laboratory managed by UChicago Argonne, LLC

Argonne Leadership Computing Facility
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439

www.anl.gov

